Appendix: Evidence of Equivalent Conditions for the Riemann Hypothesis

By Ing. Robert Polák, Slovakia

Date: 9.10.2024


Proof 1: For \( n = 2 \times 3 \times 5 \times 7 \times \dots \times p_k \), Show that \( \log(n) < p_k \)

Theorem:

Let \( n \) be the product of the first \( k \) prime numbers:

\( n = p_1 \times p_2 \times \dots \times p_k \),

where \( p_k \) is the \( k \)-th prime number. Then:

\( \log(n) < p_k \).

Proof:

  1. Express \( \log(n) \) as a Sum:

    Using the property of logarithms for products:

    \( \log(n) = \log(p_1 \times p_2 \times \dots \times p_k) = \log(p_1) + \log(p_2) + \dots + \log(p_k) \).
  2. Define Chebyshev's Function \( \theta(x) \):

    Chebyshev's function is defined as:

    \( \theta(x) = \sum_{\substack{p \leq x \\ p \text{ is prime}}} \log(p) \).

    For \( x = p_k \):

    \( \theta(p_k) = \sum_{i=1}^{k} \log(p_i) \).
  3. Apply Chebyshev's Inequality:

    Chebyshev proved that for all \( x \geq 2 \):

    \( \theta(x) < x \).

    Therefore, for \( x = p_k \):

    \( \theta(p_k) = \sum_{i=1}^{k} \log(p_i) < p_k \).
  4. Conclude the Inequality:

    Thus:

    \( \log(n) = \theta(p_k) < p_k \).

Conclusion:

For \( n = p_1 \times p_2 \times \dots \times p_k \), it holds that:

\( \boxed{\log(n) < p_k} \).

Proof 2: For Highly Composite Numbers \( n \), Show that \( \log(n) > p_k \) for Large \( n \)

Statement:

Let \( n \) be a highly composite number with prime factorization:

\( n = p_1^{j_1} \times p_2^{j_2} \times \dots \times p_k^{j_k} \),

where \( p_i \) are prime numbers in increasing order (\( p_1 = 2, \, p_2 = 3, \, \dots \)), and the exponents satisfy \( j_1 \geq j_2 \geq \dots \geq j_k \geq 1 \), with at least one exponent \( j_i > 1 \).

Then, for highly composite numbers \( n \), it holds that:

\( \log(n) > p_k \).

Proof:

  1. Express \( \log(n) \):

    The natural logarithm of \( n \) is:

    \( \log(n) = \sum\limits_{i=1}^{k} j_i \ln(p_i) \).
  2. Split the sum:

    We split the sum into two parts:

    \( \log(n) = \underbrace{\sum\limits_{i=1}^{k} \ln(p_i)}_{\theta(p_k)} + \underbrace{\sum\limits_{i=1}^{k} (j_i - 1) \ln(p_i)}_{\Delta} \),

    where:

    • \( \theta(p_k) = \sum\limits_{i=1}^{k} \ln(p_i) \) is Chebyshev's function.
    • \( \Delta = \sum\limits_{i=1}^{k} (j_i - 1) \ln(p_i) \) represents the contribution from exponents greater than 1.
  3. Estimate \( \delta_k = p_k - \theta(p_k) \):

    From the Prime Number Theorem and known estimates, we have:

    \( |\delta_k| \leq C \dfrac{p_k}{\ln p_k} \),

    where \( C > 0 \) is a constant. For our purposes, we choose \( C = 0.1 \).

  4. Estimate \( \Delta \):

    Let \( r \) be the number of exponents \( j_i > 1 \), and let \( j_{\text{min}} = \min\{j_i : j_i > 1\} \geq 2 \). Then:

    \( \Delta = \sum\limits_{i=1}^{k} (j_i - 1) \ln(p_i) \geq (j_{\text{min}} - 1) \sum\limits_{i=1}^{r} \ln(p_i) \).

    Since \( p_i \geq 2 \), we have:

    \( \sum\limits_{i=1}^{r} \ln(p_i) \geq r \ln(2) \),

    thus:

    \( \Delta \geq (j_{\text{min}} - 1) r \ln(2) \).
  5. Compare \( \Delta \) and \( |\delta_k| \):

    We need to show that:

    \( \Delta > |\delta_k| \implies (j_{\text{min}} - 1) r \ln(2) > C \dfrac{p_k}{\ln p_k} \).
  6. Relate \( p_k \) and \( k \):

    The \( k \)-th prime satisfies approximately:

    \( p_k \approx k \ln k \),

    and thus:

    \( \ln p_k \approx \ln(k \ln k) \approx \ln k + \ln \ln k \).
  7. Estimate \( \dfrac{p_k}{\ln p_k} \):

    We have:

    \( \dfrac{p_k}{\ln p_k} \approx \dfrac{k \ln k}{\ln k + \ln \ln k} \approx k \).

    Therefore:

    \( |\delta_k| \leq C k \).
  8. Compare \( \Delta \) and \( |\delta_k| \):

    From our estimates:

    \( \Delta \geq (j_{\text{min}} - 1) r \ln(2) \).

    To ensure \( \Delta > |\delta_k| \), we need:

    \( (j_{\text{min}} - 1) r \ln(2) > C k \).
  9. Relate \( r \) and \( k \):

    Let \( r = \alpha k \), where \( 0 < \alpha \leq 1 \). Then:

    \( (j_{\text{min}} - 1) \alpha k \ln(2) > C k \implies (j_{\text{min}} - 1) \alpha \ln(2) > C \).
  10. Set conditions on \( \alpha \) and \( j_{\text{min}} \):

    To satisfy the inequality, we need:

    \( \alpha > \dfrac{C}{(j_{\text{min}} - 1) \ln(2)} \).

    Since \( j_{\text{min}} - 1 \geq 1 \) and \( \ln(2) \approx 0.6931 \), we obtain:

    \( \alpha > \dfrac{0.1}{0.6931} \approx 0.1443 \).
  11. Conclusion:

    For highly composite numbers, \( \alpha \) is often greater than the required value, so \( \Delta > |\delta_k| \), and thus:

    \( \log(n) = \theta(p_k) + \Delta = p_k - \delta_k + \Delta > p_k \).

    Therefore, \( \log(n) > p_k \).

Example to Illustrate the Proof:

Let \( n = 2^5 \times 3^4 \times 5^3 \times 7^2 \times 11^2 \times 13 \times 17 \times 19 \).

  • Primes (\( p_i \)): \( 2, 3, 5, 7, 11, 13, 17, 19 \).
  • Exponents (\( j_i \)): \( 5, 4, 3, 2, 2, 1, 1, 1 \).
  • Number of primes (\( k \)): \( 8 \).
  • Number of exponents greater than 1 (\( r \)): \( 5 \).
  • Largest prime (\( p_k \)): \( 19 \).

Calculate \( \theta(p_k) \):

\( \theta(p_k) = \sum_{i=1}^{8} \ln(p_i) \approx 16.0875. \)

Calculate \( \Delta \):

\( \Delta = (5 - 1)\ln(2) + (4 - 1)\ln(3) + (3 - 1)\ln(5) + (2 - 1)\ln(7) + (2 - 1)\ln(11) \approx 13.6308. \)

Calculate \( \delta_k \):

\( \delta_k = p_k - \theta(p_k) = 19 - 16.0875 = 2.9125. \)

Compare \( \Delta \) and \( \delta_k \):

\( \Delta = 13.6308 > \delta_k = 2.9125. \)

Compute \( \log(n) \):

\( \log(n) = \theta(p_k) + \Delta = 16.0875 + 13.6308 = 29.7183. \)

Compare \( \log(n) \) and \( p_k \):

\( \log(n) = 29.7183 > p_k = 19. \)

Verify the condition for \( \alpha \):

We have \( \alpha = \dfrac{r}{k} = \dfrac{5}{8} = 0.625 \), which is greater than \( 0.1443 \). Therefore, the condition is satisfied.

Conclusion:

This example illustrates the validity of the proof that for highly composite numbers \( n \), it holds that \( \log(n) > p_k \).

\( \boxed{\log(n) > p_k} \).

Dôkaz 1: Pre \( n = 2 \times 3 \times 5 \times 7 \times \dots \times p_k \) platí \( \log(n) < p_k \)

Tvrdenie:

Nech \( n \) je súčin prvých \( k \) prvočísel:

\( n = p_1 \times p_2 \times \dots \times p_k \),

kde \( p_k \) je \( k \)-té prvočíslo. Potom platí:

\( \log(n) < p_k \).

Dôkaz:

  1. Vyjadrenie \( \log(n) \) ako súčet:

    Využitím vlastnosti logaritmu pre súčin:

    \( \log(n) = \log(p_1 \times p_2 \times \dots \times p_k) = \log(p_1) + \log(p_2) + \dots + \log(p_k) \).
  2. Definovanie Chebyshevovej funkcie \( \theta(x) \):

    Chebyshevova funkcia je definovaná ako:

    \( \theta(x) = \sum_{\substack{p \leq x \\ p \text{ je prvočíslo}}} \log(p) \).

    Pre \( x = p_k \):

    \( \theta(p_k) = \sum_{i=1}^{k} \log(p_i) \).
  3. Uplatnenie Chebyshevovej nerovnosti:

    Chebyshev dokázal, že pre všetky \( x \geq 2 \) platí:

    \( \theta(x) < x \).

    Preto pre \( x = p_k \):

    \( \theta(p_k) = \sum_{i=1}^{k} \log(p_i) < p_k \).
  4. Záver nerovnosti:

    Teda:

    \( \log(n) = \theta(p_k) < p_k \).

Záver:

Pre \( n = p_1 \times p_2 \times \dots \times p_k \) platí:

\( \boxed{\log(n) < p_k} \).

Dôkaz 2: Pre vysoko-zložené čísla \( n \) platí \( \log(n) > p_k \) pre veľké \( n \)

Tvrdenie:

Nech \( n \) je vysoko-zložené číslo s prvočíselným rozkladom:

\( n = p_1^{j_1} \times p_2^{j_2} \times \dots \times p_k^{j_k} \),

kde \( p_i \) sú prvočísla v rastúcom poradí (\( p_1 = 2, \, p_2 = 3, \, \dots \)) a exponenty spĺňajú \( j_1 \geq j_2 \geq \dots \geq j_k \geq 1 \), pričom aspoň jeden exponent \( j_i > 1 \).

Potom pre vysoko-zložené čísla \( n \) platí:

\( \log(n) > p_k \).

Dôkaz:

  1. Vyjadrenie \( \log(n) \):

    Prirodzený logaritmus čísla \( n \) je:

    \( \log(n) = \sum\limits_{i=1}^{k} j_i \ln(p_i) \).
  2. Rozdelenie súčtu:

    Rozdelíme súčet na dve časti:

    \( \log(n) = \underbrace{\sum\limits_{i=1}^{k} \ln(p_i)}_{\theta(p_k)} + \underbrace{\sum\limits_{i=1}^{k} (j_i - 1) \ln(p_i)}_{\Delta} \),

    kde:

    • \( \theta(p_k) = \sum\limits_{i=1}^{k} \ln(p_i) \) je Chebyshevova funkcia.
    • \( \Delta = \sum\limits_{i=1}^{k} (j_i - 1) \ln(p_i) \) predstavuje príspevok od exponentov väčších ako 1.
  3. Odhad \( \delta_k = p_k - \theta(p_k) \):

    Z Veľkej vety o prvočíslach a známych odhadov vieme, že:

    \( |\delta_k| \leq C \dfrac{p_k}{\ln p_k} \),

    kde \( C > 0 \) je konštanta. Pre naše účely zvolíme \( C = 0{,}1 \).

  4. Odhad \( \Delta \):

    Nech \( r \) je počet exponentov \( j_i > 1 \) a \( j_{\text{min}} = \min\{j_i : j_i > 1\} \geq 2 \). Potom:

    \( \Delta = \sum\limits_{i=1}^{k} (j_i - 1) \ln(p_i) \geq (j_{\text{min}} - 1) \sum\limits_{i=1}^{r} \ln(p_i) \).

    Keďže \( p_i \geq 2 \), platí:

    \( \sum\limits_{i=1}^{r} \ln(p_i) \geq r \ln(2) \),

    teda:

    \( \Delta \geq (j_{\text{min}} - 1) r \ln(2) \).
  5. Porovnanie \( \Delta \) a \( |\delta_k| \):

    Potrebujeme ukázať, že:

    \( \Delta > |\delta_k| \implies (j_{\text{min}} - 1) r \ln(2) > C \dfrac{p_k}{\ln p_k} \).
  6. Vzťah medzi \( p_k \) a \( k \):

    Pre \( k \)-té prvočíslo platí približne:

    \( p_k \approx k \ln k \),

    a teda:

    \( \ln p_k \approx \ln(k \ln k) \approx \ln k + \ln \ln k \).
  7. Odhad \( \dfrac{p_k}{\ln p_k} \):

    Máme:

    \( \dfrac{p_k}{\ln p_k} \approx \dfrac{k \ln k}{\ln k + \ln \ln k} \approx k \).

    Teda:

    \( |\delta_k| \leq C k \).
  8. Porovnanie \( \Delta \) a \( |\delta_k| \):

    Z odhadov máme:

    \( \Delta \geq (j_{\text{min}} - 1) r \ln(2) \).

    Pre \( \Delta > |\delta_k| \) potrebujeme:

    \( (j_{\text{min}} - 1) r \ln(2) > C k \).
  9. Vzťah medzi \( r \) a \( k \):

    Nech \( r = \alpha k \), kde \( 0 < \alpha \leq 1 \). Potom:

    \( (j_{\text{min}} - 1) \alpha k \ln(2) > C k \implies (j_{\text{min}} - 1) \alpha \ln(2) > C \).
  10. Nastavenie podmienok pre \( \alpha \) a \( j_{\text{min}} \):

    Pre splnenie nerovnosti potrebujeme:

    \( \alpha > \dfrac{C}{(j_{\text{min}} - 1) \ln(2)} \).

    Keďže \( j_{\text{min}} - 1 \geq 1 \) a \( \ln(2) \approx 0{,}6931 \), dostaneme:

    \( \alpha > \dfrac{0{,}1}{0{,}6931} \approx 0{,}1443 \).
  11. Záver:

    Pre vysoko-zložené čísla je \( \alpha \) často väčšie ako požadovaná hodnota, preto platí \( \Delta > |\delta_k| \) a teda:

    \( \log(n) = \theta(p_k) + \Delta = p_k - \delta_k + \Delta > p_k \).

    Teda \( \log(n) > p_k \).

Príklad na ilustráciu dôkazu:

Nech \( n = 2^5 \times 3^4 \times 5^3 \times 7^2 \times 11^2 \times 13 \times 17 \times 19 \).

  • Prvočísla (\( p_i \)): \( 2, 3, 5, 7, 11, 13, 17, 19 \).
  • Exponenty (\( j_i \)): \( 5, 4, 3, 2, 2, 1, 1, 1 \).
  • Počet prvočísel (\( k \)): \( 8 \).
  • Počet exponentov väčších ako 1 (\( r \)): \( 5 \).
  • Najväčšie prvočíslo (\( p_k \)): \( 19 \).

Výpočet \( \theta(p_k) \):

\( \theta(p_k) = \sum_{i=1}^{8} \ln(p_i) \approx 16{,}0875. \)

Výpočet \( \Delta \):

\( \Delta = (5 - 1)\ln(2) + (4 - 1)\ln(3) + (3 - 1)\ln(5) + (2 - 1)\ln(7) + (2 - 1)\ln(11) \approx 13{,}6308. \)

Výpočet \( \delta_k \):

\( \delta_k = p_k - \theta(p_k) = 19 - 16{,}0875 = 2{,}9125. \)

Porovnanie \( \Delta \) a \( \delta_k \):

\( \Delta = 13{,}6308 > \delta_k = 2{,}9125. \)

Výpočet \( \log(n) \):

\( \log(n) = \theta(p_k) + \Delta = 16{,}0875 + 13{,}6308 = 29{,}7183. \)

Porovnanie \( \log(n) \) a \( p_k \):

\( \log(n) = 29{,}7183 > p_k = 19. \)

Overenie podmienky pre \( \alpha \):

Máme \( \alpha = \dfrac{r}{k} = \dfrac{5}{8} = 0{,}625 \), čo je väčšie ako \( 0{,}1443 \). Podmienka je teda splnená.

Záver:

Tento príklad ilustruje platnosť dôkazu, že pre vysoko-zložené čísla \( n \) platí \( \log(n) > p_k \).

\( \boxed{\log(n) > p_k} \).